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1 ;
E{
INTRODUCTION L
This paper deals with the integration of operator-valued stochastic pro- -
- cesses with respect to Hilbert space and nuclear space valued square integrable ' i{
martingales. ;i'
- Generally speaking the stochastic integration for operator valued processes :;
can be described as follows. Let (2,A,P) be a complete probability space with a ?j.
filtration (Ft; teR) ; (F,F') and (E,E') be two pairs of topological vector
spaces in duality, and let M be an F'-valued square integrable martingale. We %
Y suppose, in this introduction, that the notion of F' (and E')-valued square :
integrable martingale and the space Lg.(!%A,P) of square integrable random va- L;
- riables with a Tocally convex topology are well defined. An elementary process ';.
with values in the space of continuous linear operators from F' into E' is E;
defined as follows. ;S.
2 X=10pLo * 1._2__ Litgaty, 008, b ot
) o
: where t = 0 <t j<t,<...<t ., , B, e Fti and L; is a continuous linear operator i;
from F' into E'. Then the integral of X with respect to M can be defined as the E;
usual Stieltjes integral ;ﬁ
n A
fm XodM, = 1B LMo + 120 lsiLi(th - Mti)

+

: This quantity defines an E'-valued random variable. The main problem of the

’ stochastic integration with respect to the given F'-valued square integrable

. . martingale M is the definition of a topological vector space, say Sz, of random
functions with values in the space of linear operators from a certain space

into E', generated by the vector space V of elementary processes as given above

E so that the mapping X-»{R xtht defines an algebraic and topological isomorphism




of V into LE. (2,A,P). The stochastic integral of an arbitrary element of S2
would then be defined by the extension of this isomorphism to Sz. Partial

stochastic integrals would also give F'-valued square integrable martingales.

The stochastic integral for operator valued processes on Hilbert spaces
with respect to a Brownian motion was considered by Curtain and Falb [3],
Daletskii [4], Gaveau [8], Kuo [15], Lepingle and Ouvrard [16], Yor [31], etc ;
(cf also [5], [6] aﬁd [19] for definitions, applications and references) ;
and the stochastic integral with respect to an arbitrary Hilbert space valued
square integrable martingale by Kunita [14]. But the first extensive definition
of the stochastic integral in the last case is due to Métivier and Pistone [20)

who showed that processes in S2

may take values in a space of noncontinuous
operators. Important applications of Métivier and Pistone's approach were made
by Pardoux for the study of stochastic partial differential equations [24], by
Ouvrard for the representation of martingales [22] and for the linear filtering

of Hilbert space valued systems [23], and by Martias for the derivation of the

nonlinear filtering equation for Hilbert space valued semimartingales [17], [18].

In a work [12] dealing with the derivation of the nonlinear filtering equa-
tion related to a Hilbert space valued nonlinear system driven by Brownian
motions, the first author showed the equivalence between stochastic integrals
with respect to a Hilbert space valued Brownian motion in the sense of Métivier
and Pistone and stochastic integrals with respect to the corresponding cylindri-

cal Brownian motion. He also obtained the nonlinear filtering equation in terms

of the corresponding cylindrical innovation process where the covariance operator

and its pseudo-inverse do not appear explicitely as in [17], [18] and [23]. In

[13]) we extended the same method to the case of distribution valued nonlinear




rasts

systems driven by distribution valued Brownian motions. ‘For this case, a cons-
truction of the stochastic integral can also be found in Itd's work [9]. In
(12) the passage from a Brownian motion M to a cylindrical Brownian motion
reposes on the fact that, in this case, Q is constant and dfM} = adt with a
constant a. The introduction of adequate predictable fields of Hilbert spaces
enables the extension of the same method to the case of arbitrary square inte-

grable martingales.

In Section 1 we consider the stochastic integration with respect to a
Hilbert space valued square integrable martingale and propose a method of cons-
tructing stochastic integrals and show that the set of martingales ‘obtained by
this method is the same as that obtained by Métivier and Pistone's method. Our
method leads to some interesting algebraic and topological isomorphisms useful
for the construction of stochastic integrals and representations of square

integrable martingales.

In Section 2 we deal with the extension of the method to nuclear space
valued square integrable martingales as defined by Ustunel in [29]. The extension
i based on the fact that in the setting of [29], every nuclear space valued
square integrable martingale M has almost all of its trajectories in a Hilbert
space H. But in general H is not unique. Although the increasing process <M>
corresponding to a martingale M can be defined independently of H, the represen-
tation d<M> = Q dtM} depends on H. The entire approach wuses a particular
representation, but the set of all square integrable martingales obtained by the

method developed here does not depend on the chosen Hilbert space H.

We end the paper with a short section of examples and applications where we

consider the white noise process as a distribution valued one corresponding to

the classical definition of the white noise as the derivative of the Brownian
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motion in the sense of distributions. We show that the stochastic integral
with respect to the white noise process is equivalent to the classical Ito

integral.

1. STOCHASTIC INTEGRATION WITH RESPECT TO HILBERT SPACE VALUED MARTINGALES.

1.1 PRELIMINARIES

A1) the Hilbert spaces considered here are real. H and K represent

¥« IS St TR W W & TR T o

separable Hilbert spaces. Scalar products and norms are denoted by (.,.)

g and |}-1], respectively. 1In order to point out, if necessary, the space on ;%
i which they are defined, they will be indexed by the symbol representing the o
: space. ‘.

y L(H,K) is the space of bounded linear operators from H into K with uniform

norm ||- ||, also denoted by I\-\lHK for more precision. L](H;K) is the space of
" nuclear operators with the trace nom ||'||1 or tr(-), also denoted ||"|{,,,
if necessary and LZ(H,K) is the space of Hilbert-Schmidt operators with the
Hilbert-Schmidt norm ||-]],, written also as ||*|lyp¢- M ;] K (resp. H ;2 K)

is the projective (resp. Hilbertian) tensor product of H with K. For notational
conveniences, H ;] K (resp. H ;Z K) are identified with L‘(H.K) (resp. LZ(H,K))

under the isometry which puts h a k into one-to-one correspondence with (.,h),k !!
for h ¢ H, k ¢ K.

oL T
’

Unless the contrary §s mentioned, we identify Hilbert spaces with their

topological duals. We shall construct many pre-Hilbert spaces becoming Hilbert !
spaces after being divided by an equivalence relation. In order to simplify Ig
the presentation and the notations we shall identify this kind of pre-Hilbert ia
spaces with the corresponding quotient Hilbert spaces. :
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The transpose of a linear operator A is denoted by A%, its domain by
Dom A and range by Rg A. The closure of a set S is denoted by S.

The algebraic and topological isomorphism between two topological vector
spaces E and F is indicated as E = F.

For the terminology of stochastic analysis used here we refer to [7] and
[191.

A1l random variables and processes are supposed to be defined on a comple-
te probability space (2,A,P) with a filtration F = (Ft i teR)) satisfying the
usual completeness and right continuity conditions. We take A = F_ . Adapted
processes, predictable processes, martingales, etc. are with respect to F.

P will represent the o-algebra of predictable sets of B+ s F_ where B+ is the
Borel o-algebra of R_. a' stands for R_ x .

The equa]ity between separable Hilbert space valued martingales is an
equality up to an evanescent set in 2'. Such martingales are defined as those
having cadlag (right continuous and left limited) trajectories, (except on an
evanescent set). For two square-integrable martingales M and N, with values in
H and K, respectively, there is a unique H il K-valued cadlag process with inte-

grable variation, denoted by <M,N> and called the oblique bracket of (M,N),

-such that M a N - <M,N> is a H il K-valued martingale, vanishing at t=o. The

bracket <M,M> that we denote by <M> is called the increasing process of M. We
put #M%t:=.|l<M>t||1. This process is the unique real predictable increasing
process with integrable variation for which [IMI12 - M} is a martingale vanishing
at t=0. We shall denote by MZ(H) (resp. ME (H)) the space of all H-valued square
integrable (resp. continuous) martingales.

From now on M will represent a given martingale in MZ(H) and 2 will denote

the measure defined on P by dP d¢M}. There exists a predictable process Q with

values in the cone of symmetric and nonnegative elements of Ll(H.H). unique up

.8 % ol
.

PEEL T

r

Gy

"l
R

A

y 2

PP R R M
R .
PN

s Te e Tw w_# ¥
-.' ’ 7 :" l'l" ]

RN




e e L o

6
5{.

to a r-equivalence, such that ||Q|], = 1 x-a.e. and <M>t'= I§-°sd*M*s' gg.

In what follows in this first paragraph, D represents a LZ(H,H)-valued 4
predictable process such that oo* = Q r-a.e. An example to such a process is _ iz
the positive square root of Q. Let L’Z(D,H,K) be the space of processes X defi- Eﬁ‘
ned as follows : for A-almost all (t,w)e @' , Xt(w) is a (not necessarily conti- <
nuous) linear operator from H into K such that Rg D (w)e Dom X (w), (X, o D, ; i?i
teR ) is a predictable process with values in LZ(H,K) and fn.llxt(w) ° Dt(w)||§. 5:
A(dt,dw) <=. The space L*Z(D,H,K) is complete under the Hilbertian seminorm
X>Lr ol 1% () o Dt(w)llg A(dt,dw)11/2 , (cf. 119]). A%(D,H.,K) will denote the
Hilbert subspace of L"2 generated by all L(H,K)-valued processes X in L"2 such o
that (Xth’k)K is a real predictable process for all h in K and k in K. The set i

of all L(H,K)-valued elementary processes of type :

n
+ 11
© " 4z 1%yt

(1.1.1) X A

= l{o}xBo

A
j+11%B8y 1

. 2
where 0 = t <t;<t,..., A;€ L(H,K) and B;¢ Fti' is dense in A°(D.H,K).

The space AZ(D,H,K) was introduced, with D = 01/2

, by Métivier and Pistone
in [20] for the definition of the stochastic integral with respect to M. We shall

denote AZ(D,H,R) by A2(D,H).

The stochastic integral of an elementary process of type (1.1.1) is the
erdinary Stieltjes integral :
n

(1.1.2 Jo X,dM, =1, A (M) + Y 1. A. (M - M, ).
) R+ tt Bo 0 o) izo Bi i ti+1 ti

As ||XII22 = E IIIR Xtht||§ , the integral extends to A2(D,H,K) by isometry.
A +

For each XeAAZ(D.H,K). f:_ XdM defines an element of MZ(K), denoted by X.M.




Before ending this introductory paragraph we just add here the fact
that if X ¢ Az(D,H,K) and Y ¢ AZ(D,H,G), where G is a separable Hilbert space,
then

t
(1L1.3) <M, Vo = J (Ygo D,) o (X o D)* diht.

0
1.2 PREDICTABLE FIELDS OF HILBERT SPACES

We deal here again with the H-valued square integrable martingale M, the
operator Q and the measure )\ corresponding to it. All the operations carried
on Q are valid A-a.e., and in order to shorten the expressions we shall
often omit the mention A-a.e.. Let again D be a Lz(H,H)-valued process such
that Q = D o D*, Define L*Z(Dt(w),H) as the Hilbert space of linear operators
f from H into R such that Rg Dt(w) c Dom f and that f o Dt(m) is continuous,
with the scalar product (f,g) = ((f Dt(m))*. (g o Dt(m))*)H. Let us denote
by ﬁt(m) the Hilbert subspace of L*Z(Dt(w),H) generated by H. The restriction
to H of the scalar product on ﬁt(w) is given by

(1.2.1) (f.g)gt(m) = (D3(w)f, D¥(w)g)y = (Qu(w)f.q)y,

Therefore, DE(”) defines an isometry from H into H which extends to an isometry
from ﬁt(w) into H. We denote this isometry by It(“)‘ We remark that if a
sequence (hn,t(“); ne N)is a CONS in ﬁt(w). then 1ts isometric image

(Ty(w) by ((w)i n e N) is a CONS in I (w)H (w) = DETwI.

Our aim is to identify the processes in AZ(D,H) with processes X such that
for A-a.e. (t,w) ¢ 07, xt(”) € ﬁt(w). This brings us to look for a suitable
field of Hilbert spaces in g‘ﬁt(w). We refer to [21] for details on Hilbertian
fields. We briefly recall the definition.

FoUR AN N, T AT ET AR Tty TOATe e
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DEFINITION 1.2.1. A predictable field of Hilbert spaces ing ﬁt(m) is a vector
subspace E having the following properties.
(i) For all f and g in E, the mapping (t,w)~(f (w), g (v)); defines a
t t Ht(“)

predictable real process.

(i) Any h € g, Ht(m) such that (ht(w). ft(w))ﬁt(w) is predictable for
all f ¢ E belongs to E.

(ii1) There exists a sequence f = (fn; nelN) in E such that the sequence

ft(”) = (fn,t(“); ne N) generates ﬁt(u).

We choose an arbitrary linearly independent sequence e = (en; né N) gene-
rating H and consider the sequence ét(m) = (én t(w); nelN) defined A-a.e.
recursively as follows.

r n-1 . -
eo,t(“)‘ = e, and en,t(”)‘= e, - kZo(en.ek't(m))gt(w) ek,t(“) for n3 1,

with
(1.2.2)4 .
ﬁ e, ¢lo): = en,t(”)/llen,t(“)llﬁt(m) if Ilen,t(w)llgt(w)> 0

o if Ilen!t(w)llﬁt(w) = 0.

- “

The nonvanishing terms of Et(m) form a CONS in ﬁt(m).

The sequence e will play the same role as f in the ‘property (iii) of the
above definition. Before giving the characterization of the predictable field
we shall be using here, we consider some predictable processes playing an impor-
tant role in what follows.

Q is a predictable process, i.e. for all f,gec H, (Qt(“)f'g)H = (f,g)gt(w)

is predictable. Therefore, by construction, all the én's are predictable. More-

over Q has the following representation (as a process with values in
L2(H.H)> LA (H,H)).

e Sl

A

P
-

E A
Y

J‘f'(.;

“~
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Q, (w) w) h h
t mzo nzoum n, t( ) m @ n

where (hn; ne N) is a CONS in H, the coefficients Uy o are predictable,

2

m.n.t >0and p =y . If X is an H-valued predict-

(w) < =, Mom mn = num

I u
mn

able process, then

Qy (W)X, (w) mgo nZo M., (@) (g (w)ihpduh

Since the processes (xt(m), hm)H are predictable, QX is a predictable process.

Therefore, for all heH, (Xt(m),h)gt(w)= (Qt(w)xt(u),h)H defines a predictable
process. We have in Ht(“)

~ n
(1.2.3) RORES)

(w) e,
j%o e

Un,i,t

with predictable coefficients. We deduce from this that for any H-valued

predictable process X, (Xt(w). °m.t(“))ut(u) is a predictable process.

If X el Ht(w). then it has the following representation.
Q‘

1.2.4 X, (w) =
020 X -,

uMa

(w) en p(w), A-a.e.

where the series converges in H (w) and } aﬁ ¢(w) <. It is obvious that an ‘ii
n=g ° S

-~ "v': l

H-valued predictable process X belongs to Il Ht(u) and if it is represented v
n° o

t" -J

by the series (1.2.4) then the coefficients are predictable. -
LN

. DA

We denote by S the set of all H-valued predictable processes. By using the :L:

S|

representation (1.2.4) of elements of n Ht(m) we immediately see that, for an o

element Xe»n Ht(“)' (Xt(“)’ t(w))H () is predictable for all Ye S iff

RN
n."" .
I b

)
L




(xt(u). En t(m))~ is predictable for all n ¢ N. This shows that the
Ht w
measurability of (xt(“)’znx(”))" for all Y ¢ S does not depend on the chosen
H, (w)
t

-~

particular sequence e.

Moreover, if (xt(m),h)~ is predictable for all heH, then (1.2.3) implies

3 Ht(w)
that (xt(m),en t(w))~ is predictable for all n. Conversely, if this is the case,
’ Ht(w)
(xt(w).h)~ is predictable for all h ¢ H, because any constant process with
Hy (w)
values in H is a particular H-valued predictable process.
We denote by E(D,H) the vector subspace of I H ,(w) consisting of all
n’
elements X such that (Xt(w). En t(w))~ is predictable for all n ¢ N. This
’ Hy (w)
is the set of all elements X such that (xt(”)' Yt(w))‘ is predictable for

Hy w)
all Y ¢ S. Therefore, E(D,H) does not depend on &. E(D,H) is a predictable
field of Hilbert spaces and said to be generated by S. We remark that E(D,H)

is the set of all elements X such that (Xt(w),h)~ is predictable for all h ¢ H.
Hy (w)
The elements of E(D,H) are called predictable fields of vectors.

A*(D,H) will be the Hilbert space of all elements X of E(D,H) such that

(1.2.5) IXE = [ 1) 1? Afdt,d) <o,
S 1 Ht(w)

A*(D,H) is the space of all elements X of E(D.H) whose representation in terms

of e as in (1.2.4) is such that

T 2
(2.6 1xli2, -] Jn‘an't(u) Adt,do) <= .

AL

e
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We shall show that ;\Z(D,H) is isometric to AZ(D,H) and obtain an equivalent X
definition of stochastic integrals with respect to M. But we need to show this A,
equivalence especially for operator-valued processes. For this purpose we first' :
~

-

define, in the same way as E(D,H), a predictable field of Hilbert spaces consis-
ting of Hilbert-Schmidt operators.

K represents here another separable Hilbert space and (kn; ne<N) a CONS in
K. We consider the vector subspace E(D,H,K) of g‘(ﬁt(w) iz K) consisting of all
elements X for which (Xt(m), ;m,t(“’) ] kn)r.lt(u)ZK is predictable for all
(m,n)e€ N, If Xe g.(ﬁt(w) i?_ K), then it has the representation

(1.2.7) X () =3 J b .(u)e .(v) sk
t m=o neo MMt m,t n B

where the series convergesin ﬁt(m) iz K, i.e. }: z b2 t(m) <o, Therefore,
Xe E(D,H,K) iff the coefficients b _ are predictable processes. We then see -
that £(D,H,K) is a predictable field of Hilbert spaces in g'(ﬁt(m) iz K). x
By representing xt(“’) as a Hilbert-Schmidt operator from ﬁt(m) into K, we "

can write (Xt(u), em,t(“’) (] kn)z = (xt(“’) em.t(“’)’ kn)K' We then see that this
defines a predictable real process, for fixed m and for all neN, iff -
(¥, (w) ém’t(w), k)y is predictable for all ke K or equivalently iff X, (u) ém’t(w) o]
is a K-valued predictable process. Therefore Xe E(D,H,K) iff (Xt(u). -m t(“’) ] k)za o

(xt(“’) e t(u); kK)g = (e 1:(m). t(“’)k)H ( ) is predictable for a'll meN and ke K,
or equivalently iff XX (w)ke E(D,H) for all k€ K. We also have seen that I
(u)keE(D H) 1£f (Y (o), x¥ ¢ (0)k)g () = (X (w)Ye(w) k) = (Xy(w),Yy(w) @ k),
is predictable for all Y¢ S, or equivalently iff (h, xt(“’)k)H ( ) (Xt(u)h.k)K =
(X,(w), h @ k), is predictable for all heH. A

.............

...............
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Therefore, we see that the definition of E(D,H,K) does not depend on the

chosen sequences (en; neN)c H and (kn; nelN)c K and that E(D,H,K) is gene-

e

.:.'

rated by (Yt(w) ek ; Ye S, ke K) as well as by constant processes with values

in H & K, (the tensor product is taken on fit(m) iz K).

2 Now we define RZ(D,H,K) as the Hilbert space of all elements X in E(D,H,K)
such that |
(1.2.8)  [1X1%: = [ 1% (]3| \er(dt,ds) < =
32 't Ht(w)ZK i

we see that RZ(D,H,K) consists of those elements X having the representation

(1.2.7) with predictable coefficients such that

2 _ 2
(1.2.9) “XHRZ = rzn ; In' bm’n’t(u)x(dt,dw) < ®
The construction of XZ(D,H,K) suggests the following statement.

PROPOSITION 1.2.2. AZ(D,H,K) = A2(D,H) &, K.

Proof : The set of elements of type

M N

(1.2.10) X, (o) = mgo nzobm’n’t(u) ém't(m) " ke Hy(w) 8, K

- NN 2 . . =2
where (k_; ne N) is a CONS in K and mzo nzo In' bm,nd)‘ <=, is dense in A"(D,H,K).

- . N
Define X'e AZ(D,H) ., Kby } Y, o Kn where Yn is the H-valued predictable pro-
n=o0

. M - '
cess defined by Yn.t(“’) = Zo bm.n.t(“’) em,t(“’)' We see that ||X]|| = ||X']].

The mapping X+X' extends to an isometry 11 of RZ(D,H,K) into RZ(D,H) ;2 K. i

- . © - ™

Conversely, if YEAZ(D.H) is represented by Y,(u) = ) an ¢(w) ep ¢(w) and if ;

m=0 ' ' N

- - - - ~ [} - -\

X'=Ya keAz(D,H) 8, K, we define Xe AZ(D,H.K) by X (w)= ¥ ap ¢lw)(ey o(w) @ k). ﬁ
m=0 » ’

§
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We see that ||X'|| = |[X||. The mapping X'+ X then extends to an isometry 12

from A2(D.H) 8, K into A2(D,H,K). Since LY a k = Y @ keA2(D.H) i, K,

ll is the inverse of 12 and the two isometries are onto. O

According to the above proof if X'e¢ Rz(D,H) ;2 K is represented by

c. X ek

Xt =} m,n"m n

m=0 n=0

o~ 8

where the coefficients are real and £ ¢ c2

<o, (X
mn m’n

3 neN)e AZ(D,H) and 3

(kn; nelN)c K are orthonormal sequences, then the isometric image X of X'

in ;\Z(D,H,K) can be represented by ﬁ
Xp() = T T cpp¥polo) ek a-ae.

m=0 n=0 '

where the tensor products are taken in ﬁt(m) iz K and the series convergesin

A2(D,H,K).

The following theorem will allow a definition of stochastic integrals,

equivalent to that of Métivier and Pistone in [20].
THEOREM 1.2.3. AZ(D,H,K) & A2(D,H,K).

Proof : (k. ; neN) is again a CONS in K. Let Xe A(D,H,K) be given by
(1.2.10) and let us define X by

M N . A
(1.2.11) X (w) = mzo nzo ba,n, £(0) €, ¢(6) @ k €H &) K

where the tensor product is taken in H @, K. X is predictable and




.......

N
)

Y 14

\j
M N . . - X
X (@) o Dyfw) = mz=° n2=0 bo,n,e(@) (D) e () @ kg E
] Since (D:(u) Em t(“’); me€N) is a CONS in It(w)ﬁt(w), this gives us the represen- ;::'
‘ tation of the Hilbert-Schmidt operator xt(”) ° Dt(u) in terms of an orthonormal :.
. .
- *
sequence in H ., K. We then have
L) .-\_
‘ 1112 = 011102 o X2 2gy A(dt,do) =
‘ A2 fﬂ‘ll tlw/ o Aglwlilykay ’ =
1 1. 02 d) = |12
= b (w)r(dt,dw) = [[X]|F2.
m=0 n=oI“‘ m,n,t A R
Therefore, the mapping X~+X extends to an isometry I1 of KZ(D,H,K)'into lf}
A2(D,H,K). -
A
Conversely, let Xe A%(D,H,K) be L(H,K)-valued. Then A-a.e. X, () o D(u) ¥
is a Hilbert-Schmidt operator from H into K that we can represent by the following :fi
series.
(1.2.12)  Xg(w) o Dyfw) = T d . (w)(Df(w)e, 4(w)) @k =
m=0 n=0 "’ ’ et
[ L] AN
+ c (w) h, &k N
mZo nZo m,n,t mon R
s
."::
where (hm; meMN) is a CONS in the orthogonal complement of It(w)ﬁt(u) in H and ;;;
of course the coefficients are predictable. But we have Co t(w) = o for all o

m,n ; because, for all heH, (h, D:(w)h)H = 0, i.e. Dy(w)h = 0, and hence

2
cm,n.t(“) = (Xt(”) o Dt(”)hm’kn)K = 0. Therefore, we have ||Xt(u) o Dt(”)IIHZK =

2

dm,n.t

T (w). Now, let us define X by
0

ome

(1.2.13)
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as an element of ﬁt(w) iz K. We see that IIXIIAZ = l|i||k2- Therefore the mapping
X +X defines an isometry I, from A2(D,H,K) into EZ(D,H,K).

Now we start from the element X € RZ(D.H,K) defined by (1.2.10), obtain
Ili = X given by (1.2.11) and get from this

(1,%),(6) o Dy(w)

M

N .
b w) (DX (w w k
mzo nzo m,n.t( ) t( )em,t( ?) ¢ %n

Xt(w) ° Dt(w)

where the tensor product is taken in H iz K. We see that we have 12 ° Ili - X.
Therefore I2 o I1 is the identity on RZ(D,H,K). This proves that the two isome-

tries are onto and I, = 151. 0

We denote by J the isometry of KZ(D,H,K) onto AZ(D,H,K). As a result of

the above proof we also get the following proposition.
PROPOSITION 1.2.4. The set of all processes of the form (1.2.11) where the
tensor product is taken on H ;2 K is dense in AZ(D.H,K).
Theorem 1.2.3 and Proposition 1.2.2 also give the following result :
PROPOSITION 1.2.5. AZ(D.H,K) = Az(D,H) iz K.

REMARK 1.2.6. As a particular case, Theorem 1.2.3 says that RZ(D.H) and

AZ(D.H) are isometric. If ie‘RZ(D.H) is represented by
- N -
(1.2.14) xt(u) = nzoa"'t(w) en.t(”)

then, as we have seen in the proof of Theorem 1.2.3, we have

X = X = X¢aZ(D,H).
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Therefore, J is aﬁ isometric injection on the set of all processes of type
(1.2.14). We have even more. If X is an H-valued predictable process such
that IQ'HD:(“’)Xt(‘”)H}Zl A(dt,ds) <= then it belongs to both ).\Z(D,H) and
AZ(D,H) and has the same norm in both of them. The set of all processes of
this type generates the two spaces. We see that KZ(D,H) and AZ(D.H) only
differ on the completion of their vector subspace of all H-valued predic-

table processes.

1.3. STOCHASTIC INTEGRALS

We continue to use the notations of Paragraph 1.2. In Paragraph 1.1 we
have seen the definition of the stochastic integral for a process in AZ(D,H).
We adopt the same definition for all H-valued processes in AZ(D,H). We have seen
that they also are in KZ(D,H). If X is such a process, then E(Im+xtdmt)2 = |]X] Ifz

= ||X||§2. The stochastic integral of én is then well defined and we put
(1.3.1) M jE en st = (2,0 M),
We remark that
(1.3.2) Moy = o (6 (w)s 8y (WD () oM (o).
| ={:M1»t if n=m, 0o if n#m

Hence (Mn; nelN) is a sequence of strongly orthogonal martingales.

Since the set of processes of type (1.2.14) are dense in RZ(D.H) and AZ(D.H)
the stochastic integral of an arbitrary element f(e;\z(D.H) is defined as the

limit in LZ(Q.AJP) of the integrals of an approximating sequence of type (1.2.14).




e

Consequently, if RG.RZ(D.H) is represented by (1.2.4) we define

(1.3.3)  fo XaM = § fo a .dM
R+ tt neo R+ n,t n,t
with the series converging in Lz(n,A.P). Obviously, the random variable defined
by (1.3.3) coincides with the stochastic integral of X = JX in the sense of
Métivier and Pistone.
For an element ieRZ(D,H,K) having the representation (1.2.7) with the norm

given by (1.2.9) we define the stochastic integral by

(1.3.4) o XaM = ¥ Y (Jo b dM_ )k
R+ tt m=0 n=0 'R+ m,n,t m,t’"n

where the series convergesin Lﬁ(n,A,P). We have

2 < 2
= ||X|]|<2 .
« IIIIAz

(1.3.5) E“I idM'
R, XM

It is obvious that the value of the stochastic integral (1.3.4) does not
depend on the particular representation of X.

The correspondence between this definition of stochastic integrals and that

‘given by Métivier and Pistone is not straightforward as in the case of functional

valued processes. The result is given in the following theorem.

THEOREM 1.3.1. Let X€A2(D,H,K) and let X = JXe A2(D,H,K). Then the stochastic
integral of X in the senseof (1.3.4) and the stochastic integral of X in

the sense of Métivier and Pistone coincide.

Proof : If X is given by (1.2.10), then X = JX is given by (1.2.11). It is
obvious that 4R+idM in the sense of (1.3.4) and IR*XdM in the sense of Métivier

and Pistone coincide. Since the set of processes of type (1.2.10) and the set of

.........................................
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processes of type (1.2.11) are dense in KZ(D,H,K) and AZ(D,H,K). respectively,

we obtain the statement of the theorem.O

For a process ieRZ(D,H,K) we denote by X.M the square-integrable martin-
gale defined by I:;, X dM . Theorem 1.3.1 says that X.M = (JX).M, the stochastic
integrals of the right-hand side being defihéd in the sense of Métivier and
Pistone. A1l along this paper the stochastic integrals are defined in the sense
of {(1.3.4). If ever a stochastic integral is defined in the sense of Métivier

and Pistone we will always precise it.
PROPOSITION 1.3.2. Let Xe A2(D,H). Then

1:3.6)  <Kwy = LRI

d#M#s(m) .
Proof : Let X (resp. iN) be represented by the right hand side of (1.2.4)

(resp. 1.2.14), then (iN) converges to X in A2

and (Xy = IXy = Xys NEN)
converges to X = JX in A2(D,H). Consequently, there is a subsequence (XN.‘ i€ N)
i

such that f:_ IliNi,s(m)lI%S(w)d#M*s(w) converges a.s. to [E_llis(w)llss(w)d%M*s(m)

and to <X.M>t. (In this last expression X.M is computed by means of Métivier
and Pistone's integrals). Since X.M = X.M and hence <X.M> = <X.M> with the inte-

gral X.M computed in the sense of Métivier and Pistone, (1.3.6) holds.O !i
,
)

Let G be another separable real Hilbert space. Then by approximating the

- v, 2
. .

LA N e
. et T T ]

elements of RZ(D,H.K) and KZ(D.H,G) by finite sums of type (1.2.10) we can

then

similarly prove tho following result. -
w
PROPOSITION 1.3.3. Let X A2(D,H,K) and Ve A2(D,H,G) N
i

o

o .J',:',_- ale)d)

(1.3.7) <X.M,Y.M>
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We shall need in Section 2 the following result.

PROPOSITION 1.3.4. Let K and G be separable Hilbert spaces and A a continuous
linear operator from K into G. Then for Xe RZ(D,H,K) we have the following

martingale equality

t et
(1.3.8) AfoXg dM = fo_ons dM,

Proof : It is easy to see that (1.3.8) holds for all processes X of type
(1.2.10) in ﬂz(D,H,K). Then the equality (1.3.8) is obtained for an arbitrary
process X by the density of processes of type (1.2.10) in RZ(D,H,K).E]

We reproduce here the following representation theorem proved in [22]
with stochastic integrals defined in the sense of Métivier and Pistone. We have
however seen in Theorem 1.3.1 that we obtain the same set of martingales with

the integrals defined by (1.3.4).

THEOREM 1.3.5. Let M and N.be square integrable martingales with values in H

and K, respectively. Then there is a process Xe'xz(D,H,K) such that

(1.3.9) N=xM+N

where N is an element of MZ(K) orthogonal to M. This representation of N
is unique in the sense that X is unique up to A-equivalence and M s

unique up to an evanescent set.

According to this Theorem M itself must have a representation by stochastic

integrals. We express this representation in the following proposition.

PROPOSITION 1.3.6. We have

t
My = [5.(0g o 15) amg




D
......

.....................................................

where 1 () is the isometry of ﬁt(w) into H. If (h ; neN) is a CONS

in H then we have Dt(w) ° lt(w) = x:=°hn ] hne Ht(w) 62 H.

Proof. Let (hn; ne N) be a CONS in H. Then the identity operator on

H can be formally represented by i = L _,h eh . This means that each element

h ¢ His represented by h = [n(h,hn)th. For f,g ¢ H we have (i o Dt(w)f'g)H =

(£.00) « 17g), = L (n g, (0 (wih . F), = ([L (DL(w)h) @ h 1f,g), .

n
Therefore, i - Dt(u) has the following representation

- ~ .
ioe Dt(w) = [n(ot(u)hn) ® hn e H .2 H. According to the proof of Theorem 1.2.3.

the isometric image of i is X, (w) = I _ h @h ¢ Hy (w) o, H.
For f ¢ H,(w) we can write

Xglwlf = 10 (h  f)o b= pn (T (whh T ()b = 2 (R 2D ()T (w)f) .

Ht(“) n

Therefore Xt(w) = Dt(w)olt(w). According to Theorem 1.3.1 we have

t t )
M, = J idM_ = J (D_ oI_)dM
t o- 3 0- ° s’7s
where the first integral is taken in the sense of Metivier and Pistone and the
second integral in the sense of (1.3.4). We also remark that theintegral on

the right hand side is equal to Zn(Mt'hn)th = Mt' 0

REMARK 1.3.7. In our construction, the factorization Dt(“) ° D:(w) = Qt(w)
played an important role in the definition of ﬁt(w). because we wanted
”t(“) to be identified with some space of linear functionals on H. For the

definition of stochastic integrals this is not necessary. In fact, we can
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: i

. define Ht(”) as any (abstract) completion of H under the Hilbertian topology
! induced by (f.g)ﬁt(w) = (Qt(”)f'g)H without having to factorize Qt(“)' The

b space A° obtained in this way is isometric with AZ(D,H.K) constructed here

- "

and the definition of the stochastic integral that we could give would be

the same. The role played by D:(w) would then be played by the isometry

of the new ﬁt(m) into H. But we still think that there is some advantage

in visualizing ﬁt(u) as a space of linear functionals on H.

1.4. AN EXAMPLE: BROWNIAN MOTION

g
i
-
-
'-

The stochastic integrals in the sense of the preceding paragraph was
defined in [12] for an K-valued Brownian motion. In this case the description
of the space Rz(D,H.K) is much simpler. In order to avoid localization
problems we take t ¢ [0,T], Te R .

An H-valued Brownian motion W= (W, ; t ¢ [0,T]) is a continuous square-

t
integrable H-valued martingale such that W, = 0 and <N»t = tQ, where Q is a
nonnegative symmetric element of L](H,H), called the covariance operator of

. — =ty = (t Q
W. Hence <W> has the following representation: <N>t foodt = fo TV (TrQ) dt,
with Qt = Q/TrQ and {Nit = tTrQ. Instead of doing the factorization of Qt

we do the factorization of Q for the construction of H, so that the measure

We consider then a factorization D o D* of Q with D ¢ LZ(H,H). Since D does
not depend on (t,w), Ht(“) = H for all (tw) € [0,T] x 0 =0°. H is the
completion of H under the scalar product (f;g)- = (D*f,D*g)H. We see that

~2 ~2 H
A (D,H) coincides with Lg(n‘.P,A) and A (D,H,K) with L2 ~ (q°,pP,2).
H

L(H,K)
Let us define the mapping W: [0,T] x H - LZ(Q.A.H’) by (t,h) = ;Q(h) =

= f:pdw » this last integral being the stochastic integral of the constant

A(dt,dw) is replaced by dt P(dw). We denote again by X the corresponding measure.
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process in Lg(Q.P,A) whose value is h ¢ H. Nt(h) = (Ht'h)H for h ¢ H. If
H

(hn; ne N)cH is a sequence converging to h in H, then Ht(h) is the
L2-11m1t of the sequence ((h .w ) 1 ne N). wdefines a standard cylindrical
Brownian motion (cf.[19]), i.e. (w (h)/ ||h||-, t e [0,T]) is a real Brownian

motion and for each t, h - ¥ (h) is a contInuous linear mapping of H into

L (Q.A.U’) such that ||wt(h)|l =t ||h||- .
H

Since H is dense in H we can choose a CONS (hn; ne N)inH contained
in H. Then wn,t = wt(hn) = (wt’hn)H defines a sequence of independent Brownian

motions. If X is an element of Lg (@°,P,1), it is represented by
H

@ 2 «© T 2
(1.4.1) X, =Ya_ _h with |[X]| =7 I E(a_ ,)dt
t n=o Mt N n=o n,t

where a4 c (Xt,hn)~ is a predictable process. The stochastic integral of X
’ H

with respect to W is then defined by

T o T ~
(1.4.2) J XodW, =} I a_ AW,
o t n=o n,t n,t

where the series converges in LZ(Q.A,B’).
2

Similarly, if (k s ne N) is a CONS in K and if X ¢ L 5 ~ (R°,P,2),
L™(H,K)
then X is represented by
® ) 2 T 2
(1.4.3) Xy =m§° nzobm n,tho @ kqe with I = % g Jo E(by o ¢) dt
where bm (xt m’k )K is a predictable process, and

W etere Tt
. . PR
"-fv'-'t e




T ™) © T
(1.4.4) J XdWy =1 1 (J bm,n,t%m,t) Kn
o m=o n=o0’

where the series converges in Li (R,A,P).
Let X be a nonrandom function in Lg (p°,P,2). In this case

H
X € LE ([o0,T], B[O,T]' dt), where B[o,T] is the Borel o-field of [0,T]. Then

T . . 2 . 2
X = [y X dW, is an 1fometry of Li ({o,T], B[Q,T]‘ dt) into L°(Q,A,P) and hence,
it characterizes an H-valued white noise on [0,T]. The passage from W to this
isometry can be used in the finitely additive white noise version of the filtering

problem,(cf. [0]), corresponding to an observation noise which is an H-valued

]

Brownian motion W. q
-~

5

<

g

2. STOCHASTIC INTEGRATION WITH RESPECT TO NUCLEAR SPACE VALUED SQUARE INTEGRABLE
MARTINGALES.

2.1 PRELIMINARIES "

The topological vector spaces considered here are over the field R. -
Given two locally convex vector spaces in duality (E,E”), e(e) or (e”,e) or, Egi
if more precision is needed, (e‘.e)E, £ will represent the value of e” ¢ E- at !ﬁ!

e ¢ E. For an absolutely convex set A c E, Pa will denote its gauge. For two

Tocally convex vector spaces E and F, the space of continuous linear mappings ﬁﬁ,
of E into F is denoted by L(E,F). We refer to [27] for the general properties
of topological vector spaces used in this section.

Let E be a complete nuclear space. If U is an absolutely convex neighbor-

hood of o0 in E, E(U) is the completion of the normed space (E/pG](O),pU) and

k(U) the canonical mapping of E into E(U). For two absolutely convex neighbor-




hoods of o, U and V in E such that UeV, the canonical mapping of E(U) into

E(V) is denoted by k(V,U) and satisfies the relation : k(V,U) o k(U) = K(V).
Since E is nuclear there exists a neighborhood base uh(E) such that
¥ UcwﬁJE). E(U) is a separable Hilbert space and for all U,Ve uh(E) such that
Uc V the canonical mappings k(U) and k(V,U) are nuclear operators.

If B is a non empty closed, bounded and absolutely convex subset of E,
then E{B] denotes the Banach subspace of E generated by B and equipped with the
norm pg. The canonical injection of E[B] into E is denoted by i(B). For two
bounded and absolutely convex closed subsets A and B of E such that AcB the
canonical injection of E[A) into E[B] is dénoted by i(B,A).

In this section F represents a nuclear space which is separable and complete.
Its strong topological dual F' is also supposed to be complete and nuclear.

The fact that F and F' are complete nuclear spaces implies their reflexivity.

ForlJeL%KF), U° denotes its polar and F'{U°] is shown to be isometric to
F(U)', the topological dual of F(U).

All random variables and processes considered in this section are supposed to
be defined on the same probability space (2,AJP), equipped with the filtration F,
as in Section 1.

A mapping X : @ +F' is called a weakly measurable process if for all ¢¢F
and all teR,, Xt(cb) is a real random variable.

We refer to [29] for an introduction to nuclear space valued martingales,
and only present here, in a slightly modified form, the square integrable martin-
gales énd some of their properties. We first start with their weak characteriza-

tion.

DEFINITION 2.1.1. A weakly measurable F'-valued process M is called a square

Integrable martingale if for all geF, M(g): = ((Mt(“)’¢)F‘,F s (tw)e '),
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has a modification in MZGR). Similarly, M is said to be a continuous square

integrable martingale if for all ¢€F, M(#) has a modification in Mi(R).

An application of the Minlos Theorem, as presented in [28), provides the

following result, for which we sketch a direct short proof.

THEOREM 2.1.2. Let M be a continuous linear mapping of F into MzaR) (resp. Mi(R)).
Then there is an F'-valued (resp. continuous) square integrable martingale M

such that, for all ¢€F, ﬁ(¢) is a modification of M(4).

Proof : Since F is nuclear, M is a nuclear mapping. Therefore, it has the

following representation.
(2.1.1) M(s) = izo A;S;(e)my »  ¢eF

where (Ai)e 11, (Si)c:F“ is equicontinuous and (mi)c,MzaR) (resp. Mi(R)) is bounded.

For ¢ €F and m<n we note the following inequalities.

n n
(2.1.2) E(|izm A, (Spa0)) < 1 1] E(sup mg 1) [(Sg00)

1=m

n :

« L1 1] EGsyp [mg o1)) supl (S;00)] :

< (izmh‘l) sup E(s‘t‘pl"'i ) "“i‘p“si")l q

n -

2,1/2

< 203 1) sypteimg 5177 supl (5,00 ]

(2.1.3)  E(T a7 o5 (T 1007 sup Elmy 7 syl (54,017
1.3) BCT ATy, e(Si0e)7 (] 117 sup Elmy )7 supl(Syae

Since (Si) also is weakly bounded the last members of these inequalities

are finite. We then deduce from (2.1.2) that the set
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A={weq; ) |x.| suplm; _(w)| < =} has probability 1.
igo 1 t 1’t
Let us put
n - n
Mo,e(0) = (L im0y 0 Mledy = T iy ¢(S;09)

Inequalities (2.1.2) show that, for fixed we A, (Mn t(“’)’”F‘ F= ﬁ(¢)n t(m)
converges uniformly in t. Let M:(m) be its limit. The mapping of F into R
defined by ¢+M:(m) for (t,w)€R, x A is linear and continuous. Therefore, it

defines an element Mt(‘”) in F' that we can represent by

(2.1.4) M (w) = 1.zoxixni’t(m)si » (thw)€R, x A.

On the other hand, the inequality (2.1.3) shows that, for all te[o0,=],

ﬁ(¢)n ¢ converges to Fl(¢)t in Lz(n.AJP). Therefore, we have for all ter, and
¢€eF

M(e)p(0) = MEw) = (Mo (0).0)pe ¢ aus.

From this the conclusion ensues.D

Next is the converse of the above Theorem.

THEOREM 2.1.3. Let M be an F'-valued (resp. continuous) square integrable mar-
tingale. There then exists a continuous linear mapping M of F into MZ(R)

(resp. Mi(lR)) such that for all ¢e F, M(¢) is a modification of ;1(¢).

Proof : Let M* be the modification of M(¢) in MZ(R) (resp. ME(IR)). Then by
an application of the closed graph theorem the linear mapping M ¢-»f4° of F

into uz(R) (resp. Mi(R)) is shown to be continuous. The conclusion follows from

the above theorem.O




“»

PROPOSITION 2.1.4. Consider the following projective system of (resp. continuous) ':5'

square integrable Hilbert space valued martingales. >
(2.1.5) e wB(F (u))s Ueu (F'))

- (resp. (Me ME(F*(U))5- U e, (F')}) -

with MY

= k(V,U)Mu for UcV, (i.e. M:(w) = k(V,U)M'i(w)) up to an evanescent Ny
set, which is equivalent to saying that M!(m) = k(V.U)ME(w) a.s. There is
then an F'-valued (resp. continuous) square integrable martingale M such w4

that ¥ Vel (F'), k(U)M is a modification of M.

We say that M is the projective limit of {Mu; ve uh(F')}.

)
7/ s

Proof : In order to simplify the notations, we give the proof for the

N

projective system of not necessarity continuous martingales. , £
Let M : F+M2(R) be defined as follows : Z:IE'
e (U . . =

(2'1°6) M(¢)"‘ (M ’¢)F'(U),F[U°] ) Ueuh(F )a ¢ € FLu®l. "
For U and V in U, (F') such that UcV and ¢e F[V° ] FIU°] N
M(s) = (M,0) = (k(V,uM’,0)
*YIF'(U),FLU°] i *YIFY(V),FIVe)”

Therefore, ﬁ(¢) defined by (2.1.6) does not depend on U. It is obvious that M
is linear. Let (on 3+ nelN)cF converge to some ¢€ F. Then (on) {s bounded and
there is a neighborhood Ueuh(F') such that (¢, (¢n))cU°. Since
(MU"n)F‘(U),F[w] = ﬁ(c}n) converges in M2 (R) to (MU'°)F'(U).F[U°] = M(¢),

we see that M is a sequentially continuous linear mapping of F into MZ(R). -

\-

F being bornological, M is continuous. We then conclude by Theorem 2.1.2.0F

"
<
LY

«
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COROLLARY 2.1.5. A wéak]y measurable F'-valued process M is a (resp. continuous)
square integrable martingale iff, for all Ueuh(F'). k(U)M (defined by
(K(U)M), (w): = k(U)M,(w)) has a modification in M*(F'(U)) (resp. WZ(F'(U)).

A A A S Ty Yy e VBB LY., T

We end the paragraph with the following useful remark.

REMARK 2.1.6. Theorem 2.1.3 and Representation (2.1.4) show that given an
F'-valued (resp. continuous) square integrable martingale M' there is

another one, say M, having the representation (2.1.4.) such that for each t,

.1
i
r.
r,
x
-
Fe

M't(¢) = Mt(¢) a.s. Since F is supposed to be separable, we have for each t,

Mt = M't a.s., i.e. M is a modification of M'.

On the other hand the set (Si) in (2.1.4), being equicontinuous, is also
bounded. Therefore there is a neighborhood Geuh(F) such that (S;)cG°.
Consequently, almost all trajectories of M are in F'[G°]. Considered as an
F'[G°)-valued square integrable martingale, M is cadlag (resp. continuous).
Since the injection i[G°] of F'[G°] into F' is continuous we see that M is
a strongly cadlag (resp. continuous) F'-valued integrable martingale. This
fact allows the definition of an F'-valued (resp. continuous) square inte-
grable martingale as a strongly cadlag (resp. continuous) one. In the sequel
all the F'-valued square integrable (resp. continuous) martingales will be
supposed to be strongly cadlag (resp. continuous) and MZ(F,F') (resp.
Mi(F,F‘)) will denote the space of all F'-valued square integrable (resp.

continuous) martingales for the duality (F,F').

Let Lf..(n.A,P) be the space of all P-equivalence classes of F'-valued weakly
~ measurable random variables X such that for all ¢e€F, X(¢):= (X.O)F. F

€ Lﬁ(n.A.P) which is equivalent to saying that for all Ueu, (F'),

. . 2
k(U)XeLg.(u)(n,A.P). A locally convex topology is defined on Lg.(2,AR)
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by the seminorms:
(2.1.7)  ry(x): = EENIME |, veu (Fh).
For Me MZ((F,F'). representation (2.1.4) holds. Therefore,

(2.1.8) Moo= 1 A m oS5 = lim M

AL t a.s.

where the limit is the strong limit in F', and
(2.1.9) Mt = E(MQ/Ft) a.s.

It is easy to show that M€ LZ,(2,A,P) and that M_ also is the limit of M,
in LE.(Q,A,P). Consequently, with the topology defined in [29], we have
W(FFY) = L2(a,AP).

2.2. THE INCREASING PROCESS OF A SQUARE INTEGRABLE MARTINGALE AND ITS INTEGRAL
REPRESENTATION

In what follows M will represent a given martingale in MZ(F.F') and uh(F,M)
the set of all neighborhoods U in uh(F) such that M is the injection of an

F'[U°®]-valued martingale according to Remark 2.1.6.

PROPOSITION 2.2.1. There is a process <M>, unique up to an evanescent set, with
values in the set of symmetric, nonnegative nuclear operators in L(F,F'),

cadlag in the bounded convergence topology of L(F,F') and such that

(2.2.1) (<M>¢.y),_.. F = <M(¢),M(v)> for all ¢,veF except on an evanescent set.

U

Proof : Let UtlﬂJF,M) and let <M>" be the increasing process of M, consi-

dered as an F'{U°}-valued square integrable martingale. <M>U has its values in

F'[u°] il F'IU°] = Ll(F(U). F'[U°]) and it is cadlag in this space.
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Let us put

(2.2.2) <M>: = §(U®)ecM>Yok(U)

MY s also cadlag in the uniform norm topology of L(F(U), F'[U°]). Since i(U®)
and k(U) are continuous operators, <M> is cadlag in the bounded convergence topo-
logy of L(F,F'). The properties of <M> other than the uniqueness are also trivial
consequences of the definition (2.2.2). Suppose now there is another process A such

that for all ¢,Y € F we have (A¢,Y) = <(M,$), (M,¥)> except on an evanescent set.

Therefore ((<M> - A)(¢),Y) =0 up to an evanescent set that could depend on ¢ and ¥.

Since F. is separable we have ((<M> - A)(¢),Y) =0 for all¢,¥Y in F except on an
evanescent set. Therefore <M> is unique up to an evanescent set.O

From now on <M>U

will denote, as in the preceding proof, the increasing
process of M, with values in F°[U°] o F [u°] = L](F(U).F w°n.
The uniqueness of <M> implies that its definition does not depend on the

chosen neighborhood U. This fact can also be seen as follows. If U,V ¢ uh(F,M)

and if U ¢ V, we have
(2.2.3) Y = §(U° V%) o MY o k(V,U).

From this we get

(U)o ol o K(U) = §(U%)ei(USVT) o MY

- 1(V") o <MY o K(V).

o k(V,U) o k(U)

Since for two arbitrary neighborhoods U and V in uh(F.M) there is a third one,
say W, in uh(F,M). contained in U n vV, (2.2.3) implies:

(2.2.4) i(U°) Y . k(U) = §(W°) o ¥ o k(W)
. (V%) o <MY o K(V)
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Therefore,¢M)is independent of the chosen neighborhood U.
DEFINITION 2.2.2. The process <M> is called the increasing process of M.

For U « uh(F’M)’ we denote by {M*U the increasing process defined by
{M#E = ||<M>2||] and by QU the predictable process with values in the set of
symmetric non-negative elements of L](F(U),F‘[U°]) characterized by

v

d<M>2 = 02 d{M*E . We denote by A~ the measure on P defined by dE’d{M#U. We

shall prove that all these measures are equivalent to each other. For this
purpose we first need to prove the following lemma.

LEMMA 2.2.3. For all A ¢ P and all ¢ ¢ F the quantity

jA(o”<k(U)¢>. k(U)o) Y

is independent of U el.h(F,M).

Proof: Let us choose U,V e uh(F,M). A= Js,t] ~x Bwiths <t andB ¢ FS.

Then we have

IA(QU(k(U)¢). k(U)o) ¥ = EDG ([l - MTI(K(V)6) k() 0)]

E[]B' (‘(<M>t- <M>S)¢ 9@)]

JA(QV(k(V)¢). k(V)9)dr"

If A = {0} x B with B ¢ Fos Similarly, we have

]A(o”<k(u)¢).k(U)¢)dx" . jA(dV(k(v)¢).k(v)o)de
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.

This shows that the measures defined by A » fA(QU(k(U)¢).k(U)¢)dAU and
A~ JA(Qv(k(v)¢).k(V)¢)dAv. coincide on the set of predictable rectangles.
Therefore they coincide on P, 8}

THEOREM 2.2.4. The measures AU, Ue uh(F,M),are all equivalent to each other.

Proof: Let us choose U,V ¢ uh(F,M) and suppose that AU(A)

0 for some
A ¢ P. Then we can write

v¢er,hu&~kwn%kwn)m”=o

But according to Lemma 2.2.3

VoecF, [A((ov o k(V)) o k(V)e) daV = o

Let (ej; J ¢ N) be a total family in F. Then (k(v)ej-. JeN) is a
total family in F(V). Let us denote by (k(v)ej ; n=0,1,2,...) the CONS in
n
F(v) obtained from (k(V)ej; Jj ¢ N) by the Gram-Schmidt ortoconalization

method. (A finite dimensional F(V) is not excluded!). The last equality implies

\)
) [A (@ k¥))e,

, k(V)e. )Y = 0.
n J

n n

Consequently IATr Qv dAv = 0. ButTr Qv =1, xv-a.e. Its integral on A can

vanish only if xv(A) = 0. Therefore, xv

to lu. Since U and V are arbitrary, AU is also absolutely continuous with

respect to Av. 0

is absolutely continuous with respect

From now on we choose once and for all a neighborhood G ¢ uh(F.M) and use

F(6°] (sF(G)) as the reference Hilbert space such that M can be considered as a

G

F-[G"])-valued process. Then we denote {M}G simply by {M} and A~ by A.




PROPOSITION 2.2.5. Let the L(F,F')-valued process Q be .defined by

(2.2.5) Q:= i(6°) « Q® o K(G)
Then for A-almost all (t,w) ¢ 87, Qt(w) is a symmetric, nonnegative
nuclear operator and for all ¢,v « F, (Qé,¥) is a real predictable

process which is integrable with respect to A. Moreover,

f

J]s.t] L plievian E[1g <My = <4>) (0).9)], s<t, B e F

I{ B(Q¢.w)dx = E[15 (<M> (6)0)], B ¢ F,
0lx

\
Q depends on the choosenneighborhood G, but is unique X-a.e. once
G is choosen, and we have

(2.2.7) d<M> = Q diM}

Proof: A1l the mentioned properties of Q are immediate consequences of the
definition (2.2.5). The uniqueness is the consequence of (2.2.6). We just
prove these equalities.

Let ¢, v eF, S<tandBeFg. According to (2.2.2) we have

EDNg ((<M>y - <> J6),0)] = EL1p (Mo - <t>3) o K(B)o.k(6)¥)] =

((Q€ o k(6))¢, k(G)¥)dA

) I]s.t] x B

and similarly, for Be F,

EC1 (<M, (8,00 = I{o},a((QG « K(G))(6) K(GI¥)N.

These equalities together with the definition (2.2.5) of Q imply the equalities

(2.2.6). 0
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2.3. STOCHASTIC INTEGRATION

The construction of the stochastic integral with respect to M is very
similar to the one presented in Section 1 for Hilbert space valued square

integrable martingales with closer attention paid to measurability problems.

¢ & £ VA -7 77

We suppose again that the neighborhood G e Uh(F,M) is fixed once and for
all, so that M can be considered as an F’[G’]-valued sqdare integrable martin-

gale. X and Q are those defined in the preceding paragraph. We identify F(G)

E
!
\
:
4

with F°[6°] and denote it by H. Operations on Q are only valid x-a.e., and in

order to simplify the notations we will not always mention it.

G G G*

Let D™ be an LZ(H,H)-valued predictable process such that D" « D™ = 0G A-a.e.

and let us put
(2.3.1) D= §(6°) o DO

* *
Then we have the factorization D e D = Q. We note that Dt(w) is a nuclear
operator from F into H.

*
L 2(Dt(w),F) will be the vector space of linear operators f of F” into R

such that Rg Dt(“) c Dom f and that f o Dt(w) is continuous on H. Equipped

4
ad
-

*
with the scalar product (f,g):= ((f o Dt(w)) , (ge Dt(w))')H. this space
becomes a Hilbert space. Here f o Dt(“) represents the continuous functional

f o Dt(”) on H. Let us denote (here again!) by ﬁt(w) the Hilbert subspace of

1

TS ‘., RS
RIS . ",""' .
A A P

N ;
L 2(Dt(w).F) generated by F whose elements are considered as continuous linear =
functionals on F°. For all f,g ¢ F we have (f,g)~ = (D:(u)f.D:(w)g)H. As
H,(w
t
in Section 1 we shall define a predictable field of Hilbert spaces in Il H, (w) N
Q-

and construct the stochastic integral for square-integrable fields. But we !!
need beforehand to consider some measurability problems. f;

L

------------
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We say that an F-valued process X is weakly predictab]é if for all
fefF-, (f‘x)F‘,F is a real predictable process. If X is weakly predictable
then for any h ¢ H, (1'(G")h,x),’.,’F = (h,k(G)x)H is predictable. Therefore,
D.X = DG' o k(G)X is also predictable, because so is DG*. Similarly, if X and
Y are F-valued weakly predictable processes, then

(X, ()Y, ())-

Ht(w)

= (D (w)%y(w), Dy ()Y, (w)),

= (05 (W) (k(8)X ()}, D" () (K(G)Y, (),

defines a predictable process.

Let e = (en; n ¢ N) be a linearly independent sequence generating F. We
could choose e in such a way that (k(G)en; ne N) is a linearly independent
sequence generating F(G). Let us again consider the sequence ;t(w) = (En,i(w),neni)
obtained from e by the procedure of (1.2.2). Each ;n is an F-valued weakly
predictable process and k(G);n is an H-valued predictable one. E(D,F) is the
predictable field in n‘i (w) consisting of elements X such that (xt(”)’;n,t(”))’

Q
is predictable for all n ¢ N. As in Section 1 we can see that E(D,F) is

¢ ()

generated by the set of all F-valued weakly predictable processes and even by

the set of all F-valued constant processes.

~2
A (D,F) is the Hilbert space of all elements X of E(D,F) such that

(2.3.2)  [ixllas [ 1I% W2 A,
o Rz. aQ° t ﬁt(w bdo) <=

-2
If X ¢ A (D,F) then it has the following representation.

(2.3.3) Xlw) = ]

nzoan.t(”)en.t(”) A-a.e.

e

AL
. o
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with predictable coefficients such that

i (2.3.4) Nxfl2s = 3 f a () (6t,d0).
A n=o0 9‘ n,

As in the setting of Section 1, (cf. Remark 1.2.6) we can prove that

~2 ~2 _
A (D,F) is isometric with A (DG, H). An F-valued process X is said to be
elementary if it is of the form

n
(2.3.5) %= Vyopp %0t Le e

x ¢.
i=1 )8y

i+l

where 0 = t0 < t.I Cives Bi e F, and ¢i ¢ F.

t

The isometric image of X in R’(DG.H), given by (2.3.5),is k(G)X. Since the
class of all elementary processes of type k(G)X is dense in R’(DG,H) we see that
F-valued elementary processes generate RZ(D.F).

The stochastic integral of the elementary process X of (2.3.5) is the
ordinary Stieltjes integral:

n
(2.3.6) IR X i 1 Mo(og) + 1 g T

(65)- M, (6.
+ 1

i+l
X - IR XdM is an isometry of the set of all elementary processes into
+

~2

LZ(Q,A,F’). Then for an arbitrary element of A (D,F) the stochastic integral
~2

t is defined by the extension of this isometry to A (D,F). The square integrable

real martingale defined by f:_ XdM is denoted by X-M.

The stochastic integral can also be defined by means of the strongly
orthogonal sequence (Mn = en'M; ne N). In fact if X is given by (2.3.3)

then we have

(2.3.7) [ X, dM, = E

a
o [R n,t n,t

{anu e om o an am el o e
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where the series converges in LZ(Q,A.B>).

~2
For a separable Hilbert space K we construct A (D,F,K) exactly in the same
~2 ~2
way as the space A (D,H,K) in Section 1. If X ¢ A (D,F,K) then it is represented

by

8
8

(2.3.8) X, (w=7 § b (w) e .(w) @k
t m=o n=o m,n,t m,t n
where (kn; ne N) is a CONS in K, the coefficients are predictable and o

2 [--] @ .
(2.3.9) 11X 1=z = § 2[ b2 dr <
A m=0 n=o 0- ’

The stochastic integral of X is again defined by

T S ST
R+t t m=0 n=o0 R+ m'not m.t n

where the series converges in Li(Q,A,n’). We always denote by X-M the
K-valued square integrable martingale defined by ﬁf_XdM.

Before ending this paragraph we make the following observation. Spaces
Rz(D,F,K) and Rz(DG,F(G),K) are isometric. In fact it is easily seen that if
X e XZ(D,F.K) is given by (2.3.8) then its isometric image XG in RZ(DG,F(G).K)
is represented by

XS (w) =m§o nz; by, ¢(0) (k(G)e, (w)) ® k.

G

Consequently the integral Sp ¥dM, with M considered as F[G°)-valued is again
+

given by (2.3.10) where M, is (k(G);m)-M and represents the same martingale

Mm defined by e, M when M is taken to be F“-valued.




M A A A e

L

PP PP

M UVLEWLH LBV b TR e L
‘w

38

A close look at the construction of A (D,F) and the corresponding stochas-
tic integrals shows that everything depends on the representation
d<M>t(u) = i(G°)°Qg(u)°k(G) d#M%E(w). Let us suppose that <M> also has another
representation d<M>t(m) = A’oQg(w)oAdZt(w) through a separable Hilbert space J,
where A is a continuous linear mapping of F into J, QJ a predictable process with .
values in the set of positive symmetric operators in LI(J,J) such that IIQ‘:(m)Il1
is bounded, and Z is an increasing predictable positive cadlag process such that
sgp E(Zt) < =, Then what we have done can be repeated with the new representation
of <M> for the construction of the correSpqnding spaces Ht(w). The new Ht(”) is
isometric with the one we have been considering here. We can also choose for
ﬁt(u) any abstract completion of F under the scalar product
(¢.v)gt(u) = (A’,Qg(w)oA¢,w)F.’F. A1l the spaces Rz corresponding to various
representations of <M> as above are isometric and the stochastic integrals of
isometric elements give the same random variables. We then see that the set of
martingales obtained by stochastic integration with respect to M does not depend

on the choosen particular representation of <M>.

N

2.4. STOCHASTIC INTEGRAL REPRESENTATION OF MARTINGALES fis

o

We consider here a pair (E,E') of nuclear spaces in duality having exactly E

the same properties as the pair (F,F') we have been considering in this section. o
We continue to use the same notations as in the preceding paragraph.

Since the canonical mapping k(U) of E* into E“(U), with U ¢ U, (E") is .

- e

nuclear, for any continuous linear mapping A from Ht(“) into E°, the mapping A ﬁ:

k(U) « A of ﬁt(m) into €°(U) is a nuclear, hence a Hilbert-Schmidt operator. %\

~2 AN

We denote by A (D,F,E”) the space of all "processes" A such that ]

a) for A-almost all (t,w) € 07, At(“) is a continuous linear operator from

Ht(w) into E”-.
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b) for all ¢ ¢ Fandv ¢ E, (At(wm.w)E, £ defines a real predictable
process, i.e. A is weakly predictable

)
c) for all U ¢ uh(E‘), k(U) o At(“” defines an element of A (D,F,E“(U)) that
we denote by k(U),A.

~2 .
For A ¢ A (D,F,E”) we define the seminorms (qu; Ue uh(E‘)) by

240 qr= (| 1K) « A2 A(dt,d)) 72,
e H, (0)2E° ()

~2
With the vector space topology induced by these seminorms the space A (D,F,E”)
is a locally convex space. Divided by the equivalence relation A~ B<=> A = B
A-a.e. it becomes a Hausdorff space. We again denote the quotient space by

~2
A (D,F,E7).

The following theorem shows that the elements of ?\'Z(D.F.E') can be repre-

sented bijectively as projective systems.

THEOREM 2.4.1. Let (Aue XZ(D,F.E‘(U)); Ve uh(E')) be a projective system with
respect to k(V,U), i.e. Uc V-»k(V.U).AU = AV i-a.e. Then there is a
unique process A€ A2(D,F,E') such that k(U)oA = AU A-a.e..

~2
Proof. We consider the continuous linear mapping y of E into A (D,F)

‘:,\1
Sl

defined by vo = (AY)% for ¢ ¢ E[U°], Ue U, (E°). We first show that R

N

~2 *~ * ° -~ :‘:

()6 « A (0,F). since AV(w): H,(w) = E°(U) then (AJ(w): ELU"] =~ Hy(w). 3

Let ¢ be a nonzero element of E[U°] and let us again denote by ¢ its .
nonzero isometric image in E-(U). If (kn; ne N) is a CONS in E°(U) such

that k = ¢/||¢||E,(U). then we can write “

B

U ad an -~ ':

AL (w) = a (we ,(w) ® k_; >

t mzo nzo m,n,t m,t n :

»

..........................
.............................
s ool P S S R “- -a.~ L <"
B e S
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3 and we have
(A 6 = 110l |E'(U~)m§o 3 o, t(0)ey ¢(u).

o * ~2
Since zm=ofn’ ai,odx < @, we see that (AU) ¢ ¢ A (D,F). For U,V ¢ uh(E‘)

with U c V and ¢ ¢ E [V°], we have k(V,U) o A = AV a-a.e.. Therefore
(AU)*o = (Av)*¢ x-3.e.. This implies that the A-equivalence class of
(AU)*¢ does not depend on the neighborhood U ¢ uh(E‘). Hence, y: E»Rz(D,F)
is well defined. 1Its linearity is obvious. Now we prove its cqntinuity.

Let (¢,.n ¢ N) converge to ¢ in E[U°] for some U u (E7). Since

* C
1Y) (o - tlllie s "AU"X’(o,p,rw))'”'%"EWJ»

) i(u°)¢n = (AU)*¢n converges to ¥ o 1(U%)¢ = (AU)*¢ in RI(D,F).
As any convergent sequence in E can be taken to belong to some E[U°],
Ue uh(E‘), we see that y: E » Kz(D.F) is sequentially continuous.
E being a bornological nuclear space, y is continuous and hence nuclear.

Therefore y has a representation of the following type.
(2.4.2) (vo), () =n§ ansn(¢)xn’t(w) A-a.e. oekE

where (an) € 11, (Sn) is equicontinuous in E° and (xn) is bounded in
~2
A (D,F).

.1
Since (Xn;.n ¢ N) is bounded in A (D,F) we have

a X . - A(dt,.d
J.. L el 1Dt @l ) 2ot

=1 lal [ 11, @1l et
n g Mt Ht(w)

A Pt It
B A
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_ _ o

; . /2 Y
: < @ la D @)1’ (sup JIX []-2) < v
n=0 n A —

‘,

.:\

« - . { i o

Therefore, L__. Ianl Hxn.t(“’)”' < A-a.e. and this impTies that .

Ht(w) -»,

3

J 1Y ax .(w)s (¢)]]- < (3 la | 11X ()]~ Isup IS (¢)] <= =
8 nso " n,t n H,(w) =~ n=o0 n n,t H(w) n n

) t t

because (Sn; ne N) .is also bounded in E”. -
: If (¢j; Jj ¢ N) converges to ¢ in E, then by the above inequality and the ’
: equicontinuity of (Sn; ne N) we have lim ”zn- anxn,t(“)sn(°j°°)|l‘ =0, ' o
. Jre Ht(w) 5
~ >

Therefore the linear mapping Ct(w): E~ Ht(“’) defined by o

= 0%

(2.4.3) Colwoz= T a s (o) (u) 3

n=o

) v
is continuous and hence nuclear. t'

Now, we put At(w)== Ct(m)i.t Then At(w) is a continuous mapping of gt(“’) r"

into E°. For ¢ ¢ F and ¥ ¢ E, we have .

=

- (A(w)oww)g- £ = (6,C,(whY)~ = (6,(w) (w))~ A-a.e. <
. _ Ht(w) Ht(w) s
Therefore, A is a weakly predictable process. .

Finally, for U ¢ uh(E’). o e E[U°] and h ¢ Ht(“’)’ we have "

(k(U) o A (w)h,8).. oy = (RAL(w) o 1(U°)0)-
. M eequ),gruny * (A < TN =

- (nAY )¢$- = (h,C (o). = (h (AN 0). .
PRI v T )

", e"ea e -0
AR LA
I ]

I‘.
S
~

~

=
.n

N

N
.‘ - .1
~
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Consequently, k(U) o At(“’) = Altj(m) a.e..
~ ~2
Suppose now that there is another element A of A (D,F,E°) such that for
each U ¢ uh(E’). k(U) o A = AY r-a.e. We then have qU(A-;\) = 0 for

-~ ~2
Ue u, (E°). Therefore, A = A X-a.e., i.e. A is unique in A (D,F,E”). 8]

REMARK 2.4.2. The above proof shows that if A is an element of RZ(D,F.E')
then it has the following representation.

(2.4.4) Ay (w) = ngo an(xn,t(“’)")ﬁt(m)sn A-a.e.
where (an)ell, (S,) is equicontinuous in E' and (X,) is bounded in

A°(D,F).

For a given Ae'l\\'z(D,F,E'), we define the following projective system of

square integrable martingales.

u_ .t .
(2.4.5) NJ = e k(U)eAOM, , Ue€ U (E')

i.e. for U,Ve Uh(E') such that Uc V, the equality k(V,U)NU = Nv holds. Therefore
according to Proposition2.1.4 there is a martingale Né MZ(E,E') such that for all
Ueu (E'), k(UN = Nu, j.e. N is the 1imit of the projective system (NU; Ue l (E')).
DEFINITION 2.4.3. Whenever Ne MZ(E.E') i{s defined by the projective system
((k(U)oA).M; Ue U, (E')) for some A X2(D,F,E'), we define S5 A.aM_ by N,
and we put N = AM, |

THEOREM 2.4.4. The mapping A+ A.M defines an algebraic and topological isomorphism
of X2(D,F,E') into M2(E,E').

Proof. The linearity of the stochastic integral is obvious. For Ue& Uh(E‘)

Lt - A RSP ‘... .'b'. e LR L Nt R, s
Ee P4 I e T U S Rl LI C I L
e A R A A R P A e A S AT A P A A & A



we have E|[k(U)/g A dMIIE.(U) = |lk(U)°I\l|2 where the last norm is computed in
+

?\'Z(D,F.E'(U)). This, together with the uniqueness of A, shows that A+-A.M is a

topological isomorphism. O

The proof of Theorem 2.4.1. suggests the following result, analogous to the

.one mentioned in Remark 2.1.6.

PROPOSITION 2.4.5. Let an E'-valued square integrable martingale N be given by
the projective system (NU:s Al M; Ueuh(E')). where (AU; Ue Uh(E')) is the
projective system of Theorem 2.4.1.Then there is a neighborhood Ve Uh(E) and
a process A'e X2(D,F,E'[V°]) such that N = (§(V¥)oA').M = (V®)(A".M).

Proof. Since the sequence (Sn-, nel) in (2.4.4) is bounded in E', there is

2 neighborhood Ve U,(E) such that (Sn; ne€lN)c V°. Now, let us consider the

~2 . .
sequence (A‘n; ne N) in A (DO,F,E°[V ]) defined by

n ~ ~ o
Ag’t(w):=k§o akxk’t(w) ° Sk € Ht(w) o, e-fv].

We have for m < n and ¢ = sup pzo(Sn).
n Vv
2

.. Mdt,dw)
Hy (w)2E°[V°]

n
I13ax .(w)es |

r n

2
< C (1 lag) 11X J(w)]]-~ 1€ a(dt,dw)
- Jna kgm k k.t H

th)

1.4

¢ n n
. i §=m|ak| lagl 1% Q)] 11%5 o)1 Aldt,d)

ia

¢ ( 1 lal) s (108 I atae.an
u - N .
kem K ) PR R Hy (w)

4
3
o
3
"
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~2 °
We see that (Aﬁ: n ¢ N) is a Cauchy sequence in A (D,F,E°[V"]) and its limit

A can be represented by

Ag(m):= ng anxn’t(w)ssn A-a.e.

0

~2 n
Let us define An e A (D,F,E”) by An’t(m)¢:= kgoak(xk’t(w)’¢)g " S
t

¢ ¢ Ht(”)‘ We can formally represent An by
n -
An,t(w) = kgo akxk’t(w) ® Sk € Ht(w)e E”.

On the other hand, we deduce from (2.4.4) that for U e uh(E‘). k(U) o A has

the following representation:

k(U) < A, () =nzo?"x"-t(”) o(k(U)S ) e Hy(w) 32 E- (V)

From this we can also deduce that A converges to A in Xz(D.F.E‘).

We observe that the mappings i(V°): B + i(V°) ¢ B defined by
(i(v°) o B)t(“) = §(V°) Bt(w) from EQD.F.E’[V°]) into EfD,F.E’) and i(V°):
N+ i(V°) o N defined by (i(V°®) o N}y (w) = i(V°)Nt(w) from M2 (E°[V°]) into
MZ(E.E’) are continuous . We then see that An = §(V°) o A; converges to
A=i(V°) o A" as n+ = Therefore, A .M = (1(V") o AZ).M = 1(V")(A;.M)
converges to A.M = (i(V°) o« A°).M = i(V°)(K(M). 0

In what follows we shall give the extension of Theorem 1.3.5 for the
representation of nuclear space valued square integrable martingales.

We first consider the following trivial extension.

THEOREM 2.4.6. Let N be a square integrable martingale with values in the

~2
separable real Hilbert space K. Then there is a process X ¢ A (D,F,K)




such that

(2.4.6) N=X.M+nt

F
where N” is a K-valued square integrable martingale orthogonal to M. The

above representation is unique in the sense that X is unique up to

A-equivalence and M ¥s unique up to an evanescent set.

The orthogonality of N* with M is expressed as follows: Vé ¢ F, Vk ¢ K,

< (M'°)F‘,F' (Nl.k)K > = 0 up to an evanescent set.

Proof. By Theorem 1.3.5 we can uniquely represent N by XG.M + N' where

G T2 ~ poFn® . . °
X" ¢ A (DG,F(G) = F°[G],K) and M is considered as F-[6°]-valued. But the
6

~2
martingale X".M is also represented by X.M with X ¢ A (D,F,K). The ortho-

gonality of N* to M is obvious. QO

THEOREM 2.4.7. Let N be an E'-valued square integrable martingale ; then N has

the following representation

(2.4.7) N = XM+ N

where Xe?\'z(D.F.E') and le MZ(E,E') is orthogonal to M. This decomposition

is unique in the sense that X is unique up to A-equivalence and Nl is unique

up to an evanescent set.

Here again the orthogonality of N1 with M is expressed by YéeF, VeE

we have <(M,4), (N1,7)>'- 0 up to an evanescent set.

~

Proof. Let us consider the projective system (k(U)N.lquh(E')) whose limit
is N. Then according to Theorem 1.3.5,

.....
D A
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U ul

(2.4.8) Kk(UN = XM+ N

U

where X'e A2(D,F,E'(U)) and NY!

¢ M2(E'(U)) is orthogonal to M. For U,Ve u, (€')

such that UeV, we have k(V,U)(XU.M + N9y = k(v,0)x¥om & k(v oYt = XV om 4 WVE
and V6 €F, ¥heE' (V)

o

«(M8)ps £ s (k(V,U)NUl.h)E.(v)> = <M8)p p s (N”l,k"(v,U)h)E.(U)> -

Hence, by the uniqueness of the orthogonal decomposition, k(V,U)(XU.M) = XV.M and
k(UL = WY Therefore (X5 et (1)) and (\UY; ue U (E')) are projective
systems. According to Theorem2.4.1 there is an element X of XZ(D,F,E') unique up
to r-equivalence such that the projective.limit of (Xq M; Ue.uh(E')) is represented
by X.M. If N! denotes the projective limit of (NUl; ] eUh(E')) then the decompo-
sition (2.4.7)is obtained. The uniqueness of the decomposition is a consequence of

the uniqueness of the decomposition (2.4.8).0D

As in the case of Hilbert space valued martingales we can give the

integral representation of M by itself.

PROPOSITION 2.4.8. We have

t
(2.4.9) M, -I Ds o Ig dM
o-

- - .
where It(m) is the isometry of Ht(”) into H = F(G) = F[G ].
Proof. Immediate consequence of Proposition 1.3.6. O

Before ending this Section, we would like to point out some topological facts
on locally convex tensor products that could provide a better understanding of
stochastic integration. What we recall here below on locally convex tensor products

was developed in [11] as an extension of Chevet ans Saphar's works [2] and [26].
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Let E be an arbitrary locally convex space and U(Es be a base of absolutely
convex closed neighborhoods of o in E. For a positive number k, the conjugate
number k'.is the one determined by 1 +.%. =1, If EITF is a locally convex tensor
product of two locally convex Space: E and F, then EitF denotes its completion.

.

For an index set I, a family (x;) in E and for some Ue u(E) and some ke [l,+=]

jel
the following extended real numbers are considered.

T T Y e T T AT A R

-
AP ANING A AN

({Ipu(xi)“)’* if kell, +=I
Ny, k((*3)je1)=
sup pU(xi) if k=+=,
1

T

AN,

?uP e(Z |(x"xi)|k)]ﬂ< if kell, +=[
MU,k((xi)ié I)'.= x'eU 1

ﬂ' sup sup |(x'.xi)| ifks=4+o,
- x'eye 1
o where (x',xi) represents the value of the continuous linear functional x' at X5

To shorten the notations these two numbers will be written as NU k(xi) and MU k(xi)’

respectively.

Given two locally convex spaces E and F the following numbers corresponding

) A AL, S Sile B

n
- to an element 2z = i{ x;8y;, Wwith x;€ E and y. € F define seminorms on EoF.
=]
n
U v(z)" sup {| Z (x'oxi)(y'oyi)l ; '€V, y'e ve}
’ j=1

A,v, k(202 = InF Ry My )

oy, v k(2):= inf Mu,k'(xi)Nv.k(yi)

n
'U,V.k(z)." inf 1§1pu(xi )Pv(yi)

...............................................
........................................................
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with UeU(E) and V € U(F), where the supremum and the infima are taken over all

representations of z.

The seminorms xU.V.k and Pu,V,k are decreasing functions of

kelliv =l ey,yShy,v,k » S0,y SPu,v,k 2™ dyv,1 = Puv,1 = "y

If Ter Ty T and T denote the locally convex topologies gener.ted by the

k™ Pk
systems of seminorms (eU.V)’ (AU v k)’ (oU V,k)’ (nU V) when U and V run over

u(t) and u(F), respectively,and EueF, EaA F, Enka, EcﬂF the corresponding

k
locally convex spaces, then for k1<:k2 in ]J1,+=[ the following inequalities of

topologies hold
Te“TA,‘<TAkZ‘<TAk1‘<TA1 =T,

R L - U

If E or F is a nuclear space, as t_ and 1, coincide [25] then so do the
above topologies.
In the sequel 1 denotes one of the equivalent locally convex topologies on

EaF when E or F is nuclear.

Now we go back to the dual pairs of nuclear spaces (E,E') and (F,F') we
have been considering in this paper and before giving the main theorem we prove

the following.

PROPOSITION 2.4.10. X2(0,F,E') ¥ A2(D,F)a E' and L2,(8,4 ) ¥ L2(R,AR)8 F".

Proof : Let U represent the unit ball of XZ(D.F) and V be a neighborhood
in uh(E'). The seminorms Pu,v,2 and AU.V,Z on XZ(D,F)nE‘ are equivalent to the

Hilbert-Schmidt norm of XZ(D.F)EZE'(V). [26]. IfA-= kg ansk is an element of
=0
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..............................
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X2(D,F)aE', then we define the mapping i from X2(D,F)aE' into A2(D,F,E') by

MNCNERED ¢l ST il 1 ) g Yt Sl

n
~
1(R)y(w):= A (w) = izo(xk-t(”)")“t(w)sk' According to Proposition 1.2.2, the Hilbert-

. R v
Schmidt norm of k(V).A is equal to qy(A), (cf. (2.4.1)).
Therefore i extends to an algebraic and topological isomorphism from

XZ(D,F)Gx E' S 'I\\'Z(D,F)i‘> £ 2 XZ(D,F)GTE' into XZ(D.F.E'). Conversely, let us
2 o2 -

N .
choose KeAZ(D,F,E') as defined by Kt(w)n nzoan(xn’t(w)..)ﬁt(w)sn where (an).

" ", n
(X,) and (S,) are as in (2.4.4). A is the limit of An,t(“’) = kzoak(xk.t(m),.)ﬁt(w)skf

-1V n A " . .

The isomorphic inverse image i 1An of An converges in AZ(D,F)uTE'. This proves
. L2 y v V2 )

the isomorphism A™(D,F,E') = A"(D,F)a,E’.

The second isomorphism announced in the proposition is proved in a similar

way.o

N
As a consequence, we see that any element A of AZ(D,F,E') can be represented

by

© LY
(2.4.10) A= § aX8S, € K°(D,F)3 E"
k=0

where (ak)ell, (Xk) is bounded in ?\'Z(D,F) and (S,) is equicontinuous in E'.

Moreover, we also can write

S .
o
by
.
-
..
Ry
-
-,
N
t s

<

(2.4.11) A.M = kioak(xk.n)-sk e W(R)EE'.

'y

e ;j
RN
,-“-‘

Let G be a neighborhood in U (E) such that (Sk)c G°. By Proposition 2.4.5. and

by (2.4.10)we can write A = §(G°),A', where A' has the representation :

l. I’

(2:4.12) & = [ adas, € A2(D,F)8,E" [6°)
=0

"l
S
.
.
-
-3

S
<
-
.l
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Si '\'2 D ~ ey [} '\‘2 ~ ' oy v '\'2 ' [} .
ince A®(D,F)a;E'[6°)c A (D,F)a,E'[6"] = A"(D,F,E'[G°]), A’ can be given a repre-
sentation of type (2.3.8), namely

(2.4.13) A (o) = m'go nzobm’n't(w) 3, (o)ak,
where (k) is a CONS in E'[G°], and A can be written as .
‘ (2.4.18) A () = mzo nzobm'n-t(”)(zm»t(“’)")ﬁt(w)"(ﬁ°)kn
ii the series converging in XZ(D,F,E'). Consequently, the martingale A.M can be
E; represented by
E AM = mzo nzo(bm’n.Mm)ui(f)kn ,

. - ~ . . 2 1y Vv 2 ~ 2 - '
with Mm = em.M, and the series converges in M (E,E') = LE.(Q,AJP) = M (R)u%E .

- 3. EXAMPLES AND APPLICATIONS
3.1. NUCLEAR SPACE VALUED BROWNIAN MOTION

The definition of a distribution- valued Brownian motion and the integration

with respect to it was given in [9] and [11]. The definition and properties of an

F*-valued Brownian motion are quite similar. In order to avoid the classical
localization problem for Brownian motions we suppose that t ranges over the finite

interval [o,T].

DEFINITION 3.1.1. Let W = (W,,te[0,T]) be an element of MX(F,F') and let Q be

a continuous symmetric nonnegative linear operator from F into F'. We say

that W is an F'-valued Brownian motion with covariance operator Q if

<W >t = tQ.



Since Ne:Mi(F,F‘) there is a neighborhood Ge uh(Fj such that almost all the 3

trajectories of W belong to F'[G°]. Considered as an F'[G°]-va1ued martingale,

v

one can prove that W is an F'[6°]-valued Brownian motion. As previously, we iden-

tify F(G) and F'[G°] and denote them by H. If QG is the covariance operator of W

vy

p considered as an H-valued Brownian motion, then we have Q = 1(G°)°QG°k(G).

G G

pG,pG*

1f 0%s an element of L2(H,H) such that QF = we put D:= 1(6°)o0C.
Then a scalar product can be defined on F by (¢,¥) = (D*¢,D*\r)H with ¢,YeF.
ﬁ is the completion of F in the Hilbertian topology induced by this new scalar

product. It is identified with a subspace of the algebraic dual E‘* of F'.

LSS YT TTEERTY Y Y v v,

Everything we did in the preceding paragraphs for a general square integrable

N n
martingale M can be repeated for W by replacing all Ht(m) by H, Qtd#M*t by

Co e et
. , [ P

oo P

ST e AL .

e UL S R B4

Qdt and A(dt,dw) by dt P(dw).

~2
As we have seen in Paragraph 1.3, A (D,F) coincides with Lg (a°,P,2).
H
We also remarked that if X is an element of L~ (fo,T], 8[0 T] ,dt), then
fo xtdwt is an isometry of L- (fo,T1], 8[0 7 dt) into L (R,A,P).

TR CPE R ...
R Ul N .
Lt . eta ) P
. P e N T SR A P

PRI Ll

Considered as a linear process from LS ([0 7], B [0,7]° ,dt) into L (Q AP),

W generates a cylindrical probab1l1ty on L~ ([0,7], B [0,T]° dt), called a
Hilbert space valued white noise (cf [1]). Ne will not deal here with problems
concerning the cylindrical theory of the white noise. We shall consider the

white noise rather as a distribution valued process.

3.2. WHITE NOISE PROCESS

A white noise is also defined as the derivative of the Brownian motion in

X the sense of distributions. We shall work here on this definition.




RV Rfnigta Gie Bia aT, i aty’ 4ty Bis et Myl pla el o i D N A o S e iy i S SRl P Lt oaih Sa o IEsn AN A AL NS A A 4

52

Let us consider the dual pair (D,D°) where D is the space of infinitely
differentiable real functions with compact supports and D° the space of all

distributions on Rpoth taken in their usual topologies. The pair (0,D7) has

. all the properties of the pair (F,F”).

i . We consider a real valued Brownian motion Won R_. W is a random .
distribution defined by W(¢): = f12+°twtdt‘ for ¢ € D. Its derivative W in

: D° is defined by W(¢):= -W(¢) = fl!+¢tdwt‘ In this sense W is a D”-valued random

i variable. But for many applications we need a definition of the white noise

rather as a process. We adopt the following one here.

- e = v W

DEFINITION 3.2.1. We call a (real-valued) white noise process the D“-valued
Gaussian process W= (ﬁt, t ¢ R,) defined by

T Y wemm—

. t
¢ = W (o) = Io o W, ¢ € D.

-

° 2 . y _ A
We have NeMC(D, D') and (<w>t¢,\r) = <¢.w,w.w>t =7 ¢svsd4 for ¢,¥e D.

Therefore, we can write Qt = st a5, where Gt is the Dirac distribution at the

point t. We already have the factorization of Qt through the Hilbert space R.
In fact, D

Eae]

¢ a€¢R + as, e D' and D:: ¢eD ~+ st(q;) = ¢(t)e R. We can define a

scalar product on D by

-

(a».ua)g 2= (Quéab)p. | = (6,6:8,0)p = 6.0,
t

for ¢,0 ¢ D. Let us complete D by the set of all the real functions on R.
Two functions f and g belong to the same equivalence class iff f, = g,. Divided
by this equivalence relation the set of all real functions becomes a Hilbert

space denoted by H, and equipped with the scalar product (f,g)~ = f.g .
t H t7t
t
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Obviously Ht is isometric to R. Therefore A (D,D) is isometric to Liz(ﬂ’.P.l)
where A(dt,dw) = dt P (dw).

Let X be a D-valued elementary process given by

n-1
Feltae) =1 (£.w)os(s)
t izo )tigti+]]x8i w)¢] S

where t < t,< ... <t ,B. eF, and ¢, ¢ D. According to the definition of
0 1 n® i ti i
the stochastic integral, we put

n

-1 . .

I X, 0, =
t 't
ll+ i

i+
65(t) du,

<)o (t) JdW
Inf ,.Zo’]ti,ti+]],3i(t. )6, (t) Jaw,

tht(t,-) d”t'

We have E [ I'r Xtdﬁtlz =fp E [Xi(t.')] dt. We easily see that the extension
+° +

~2
of the stochastic integral to the elements of A (D,D) gives,by isometry,the

stochastic integrals, in the sense of Ito, of elements of L%Q(Q‘.P.A).

We conclude this observation by the following statement.

PROPOSITION 3.2.2. Let W = (ﬁt. t e R.*) be a real-valued white noise and

~2

Tet 1 be the isometry of A (D,D) onto L%z(n‘.P.A) defined above. Then
-2

for X ¢ A (D,D) we have

[ X, dW -'I (IX), aw, .
t Wy t M
R, R,
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3.3. GIRSANOV THEOREM

We go on using the notations of Section 2.
In order to simplify the expressions, we take M ¢ Mz(F.F'). Let us choose

an element £ of Xz(D,F) and put
7 (- (Y e o)
= exp -I M. - —I AR d¢M
t o LS 'g 2 0 S HS(.) * S

If £(2) =1, then Q = Z_*Pis a probability on A, equivalent to P. Let h be
defined by ht(m)== Dt(w)olt(w)zt(m) x-a.e. (cf. Proposition 2.4.8) and the

F“-valued process Y by

t
AL Io hdiMi . + M,

Then under Q, Y ¢ ME(F,F’) and <Y> = <M>,

Proof. The theorem is an immediate consequence of the Girsanov Theorem
for Hilbert space valued square integrable martingales, [19]. As in the
finite dimensional case,M + <¢-M,M> = Y is a square integrable martingale under
Q and <Y> = <M>. But by using the representation (2.4.9) we obtain

t
LM Mo, = <LM, (DeIM>, = I

t
D ()1 (-)g (-)d¢M$ =, h diM} . From this the
o S S 5 o S s

conclusion follows. ©

To conclude this short section we would 1ike to mention that the results
of 12 can be extended for the derivation of the filtering equation when the
process Y given above §s the observation proce;ss in a filtering scheme.

The complete extension of the results of [17] in the Hilbertian case to

general nuclear space models needs the characterization of special




semi-martingales and the definition of their local characteristics. But

the theory of nuclear space valued processes has only partial results on

this subject, (cf. [30]).
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